aflt| Ties © Esri — Source: Esr, Icubed, USDA, USGS, AEX, GeaEye, Getmapping, Aerognd, IGN, IGP, UPR.EGP, and the GIS U

Exploration into Exif Data

Tidewater Big Data Enthusiasts

Contents

[List of Tables|

[List of Figures|

(1__Introduction|

[3  Exploration of datal
[3.1 Image orientation| . . .
[3.2  Times between pictures|

Chuck Cartledge
Developer

May 10, 2020

ii

ii



[3.3 Accuracy and precision| . . . . . ... 10

B e S

[3.4.2 Displayl . . . . ... .. 13
4__Data reduction| 17
[5__Exif UserComment field 17
[6 Linux port usage 19
[7_Results| 20
8 Future workl 24
9 __Conclusion| 25
[A__Miscellaneous files| 29
[B__References| 29

List of Tables

(1 GPS related Exat tags.| . . . . . . ..o o 2
[2 Exit image orientation values.| . . . . . .. .00 7
[3 Orientation values as reported by images.|. . . . . . . . .. ... ... .... 8
{4 Accuracy vs. Precision truth table| . . . . . ... ... ... .. ... ... 10
[ Exif data embedded in one image.| . . . . .. ..o L 20

List of Figures

(1 Notional Exif file configuration.| . . . . . .. ... ... ... ... 3
[2 Evaluating 1,592 GPS recorded time data.|. . . . . . .. ... ... ... .. 4
[3 Evaluating 1,592 GPS positional data.| . . . . . . . .. ... ... ... 5
|4 Evaluating 1,592 time and GPS positional data.|. . . . . . . ... ... ... 6
b Different Fxif orientation values). . . . . . . .. ..o 8
(6 Different Exif orientation values as displayed by image viewer.| . . . . . . .. 9
[7 Histogram of seconds between images.| . . . . . . . ... ... ... ..... 11
(8 AcCCUracy versus PreciSlon.| . . . . . . . . . . o v e 12
[9 Histogram of meters between images.| . . . . . . . . . ... ... ... .... 14
(10 Dendrogram of meters between images.| . . . . . . . ... ... ... 15

i



[I1T  Raw and clustered data on a world map.| . . . . .. ... ... ... ... .. 16

I2 A small area with labeled cities] . . . . . . .. ... ... ... ... ... 18
(13 A geographically oriented picture album.| . . . . . .. .. .. ... ... ... 25
(14 A popup from the album. . .. ... .. ... ... 000 26
(15 A linked 1mage.| . . . . . . ..o 27
(16 An image without Exif data.. . . . . . ... .. ... o000 28

1l



1 Introduction

We explore how Exchangeable image file (Exif) data can be used to create a photo album
using the Global Positioning System (GPS) temporal and positional data automatically
embedded by many smart phones into Joint Photographic Experts Group (JPEG) images.
We look at the quality of the embedded data, how the data is used “behind the scenes” by
image browsers to “correct” things, and discover operating system limitations that affect
how images can be processed. The end result being a web page JavaScript enabled clickable
geographic oriented web page.

2 Purpose

Much of our lives are recorded and maintained on our smart phones. We will be looking at
what types of data are recorded in the metadata embedded in the pictures we have taken,
and those that we have received. The metadata data is called Exchangeable image file (Exif).

“This standard specifies the formats to be used for images, sound and tags
in digital still cameras and in other systems handling the image and sound files
recorded by digital still cameras.”

JEITA Staff [2]

Notionally, the Exif is embedded at the start of the image file (see Figure [I). We will be
focusing on the global positioning system (GPS) data (see Table [1]).

The ultimate purpose of this exploration was to determine the feasibility of automating
the creation of a map based clickable image showing the travels my wife Mary and I had
taken based on the pictures in my phone.

3 Exploration of data

All images were downloaded from my iPhone 6s on 17 April 2020. There were a total of
1,592 JPG images. An assortment of MOV and other miscellaneous files were removed and
are not part of the investigation. The images were taken mostly by my camera, some came
as part of texts, while the source of others is unknown.

The first order of business was to get a feel for the “quality” of the images. Quality
in this context is: can the image be used to temporally, and geographically place the im-
age. Exif has two places where time is recorded; GPSTimeStamp and GPSDateStamp tags.
GPSDateStamp is an ASCII string, GPSTimeStamp is a RATIONAI[T It is possible to look

A RATIONAL number is computed based on two LONGs. The first LONG is the numerator and the
second LONG expresses the denominator. A LONG is a 32-bit (4-byte) unsigned integer.[2]



Table 1: GPS related Exif tags. The tags in bold (ex. GPSTimeStamp) are the focus of

our interest.

Num. Tag Explanation
0 GPSVersionID GPS tag version
1 GPSLatitudeRef North or South Latitude
2 GPSLatitude Latitude
3 GPSLongitudeRef East or West Longitude
4 GPSLongitude Longitude
5 GPSAltitudeRef Altitude reference
6 GPSAltitude Altitude
7 GPSTimeStamp GPS time (atomic clock)
8 GPSSatellites GPS satellites used for measurement
9 GPSStatus GPS receiver status
10  GPSMeasureMode GPS measurement mode
11 GPSDOP Measurement precision
12 GPSSpeedRef Speed unit
13 GPSSpeed Speed of GPS receiver
14  GPSTrackRef Reference for direction of movement
15 GPSTrack Direction of movement
16 GPSImgDirectionRef = Reference for direction of image
17  GPSImgDirection Direction of image
18 GPSMapDatum Geodetic survey data used
19 GPSDestLatitudeRef =~ Reference for latitude of destination
20 GPSDestLatitude Latitude of destination
21 GPSDestLongitudeRef Reference for longitude of destination
22 GPSDestLongitude Longitude of destination
23  GPSDestBearingRef Reference for bearing of destination
24  GPSDestBearing Bearing of destination
25 GPSDestDistanceRef =~ Reference for distance to destination
26 GPSDestDistance Distance to destination
27 GPSProcessingMethod Name of GPS processing method
28 GPSArealnformation ~ Name of GPS area
29 GPSDateStamp GPS date
30 GPSDifferential GPS differential correction




Exif file data configuration

Header

Figure 1: Notional Exif file configuration. Image from [5].

at the bytes in a JPG image and read the GPSDateStamp directly. Software must be used
to locate and compute the GPSTimeStamp.

Analysis of the images looking at the presence, or absence of GPSTimeStamp and GPS-
DateStamp tags was performed (see Figure . Approximately 20% of the images had data
that was either inconsistent, or incomplete. Analysis of the images looking for the pres-
ence, or absence of latitude and longitude data (GPSLatitude and GPSLongitude) was per-
formed (see Figure|3). Positional data in the images was totally absence approximately 19%
of the time, there were not any cases where either latitude or longitude was presence, and
the other was absent. The presence or absence of positional data will be used to reduce the
number of images to be considered. Combining the idea of eliminating images based on lack
of positional data, and the presence or absence of time data, gives additional insight into
the images (see Figure [4). Of the 1,592 total images, 1,259 (about 79%) have both valid
positional and time data.

3.1 Image orientation

A smartphone is not limited in the way it must be orientated to take a picture. Exif records
the camera’s orientation when a image is created[2]. The orientation value (see Table [2)
is used by some image browsing software to “correct” the displayed orientation so that the
presented top-left corner is “up.” Sample images were taken to demonstrate different values



TimeStamp is NA TimeStamp is OK

DateTime is NA DateTime is OK

Figure 2: Evaluating 1,592 GPS recorded time data. There are 7 cases where both GP-
STimeStamp and GPSDateStamp tags are not available (NA). 1259 cases where both tags
are OK. 325 cases where GPSDateStamp is OK and GPSTimeStamp is NA. Approximately
20% are bad.



Lon. is NA Lon. is OK

Lat. is NA Lat. is OK

Figure 3: Evaluating 1,592 GPS positional data. Of the 1,592 total images, 300 images did
not have positional data. Approximately 19% are bad.



Lat. is NA Lat. is OK

Time is NA Time is OK

Figure 4: Evaluating 1,592 time and GPS positional data. Of the 1,592 total images, 300
images did not have positional data and were without time data. While 32 had positional
data, but were without time data. The remaining images had both time and positional data.
Approximately 21% are bad.



Table 2: Exif image orientation values. The orientation is defined as a SHORT. Where a
SHORT is a 16-bit (2-byte) unsigned integer|[2].

Value Meaning/interpretation
1 The Oth row is at the visual top of the image, and the Oth column
is the visual left-hand side.
2 The Oth row is at the visual top of the image, and the Oth column
is the visual right-hand side.
3 The 0th row is at the visual bottom of the image, and the Oth
column is the visual right-hand side.
4 The Oth row is at the visual bottom of the image, and the Oth
column is the visual left-hand side.
5 The Oth row is the visual left-hand side of the image, and the
Oth column is the visual top.
6 The Oth row is the visual right-hand side of the image, and the
Oth column is the visual top.
7 The Oth row is the visual right-hand side of the image, and the
Oth column is the visual bottom.
8 The Oth row is the visual left-hand side of the image, and the
Oth column is the visual bottom.
Other reserved

of Exif Orientation (see Figure . The same images when viewed by an image viewer are
often rotated to the “correct” orientation (see Figure []).

3.2 Times between pictures

Intuitively, the time between images would vary considerably. Even with the innumerable
cat and dog images and videos on the internet, after a while a person would get bored taking
pictures of the same subject again, and again, and again. We set off to see if that pattern
was evident in our data. For those images that had data in the Exif DateTimeOriginal field,

1. We converted the data to seconds from January 1, 1970 (Unix seconds),

[\)

. Sorted the data from low to high,
3. Computed the seconds between successive images, and
4. Created histogram of the time differences with 200 bins.

The resulting histogram met our expectations (see Figure . The histogram shows a few
cases of greater than 2 months between successive pictures, and a very large number (1,299)

7



Table 3: Orientation values as reported by images.

Orientation value Count %

1 732 46.0
2 None
3 128 8.0
4 None
5 None
6 718 45.0
7 None
8 8 0.5
Not Available 6 04
Total 1,592 99.9

(a) Orientation value: 6 (portrait)  (b) Orientation value: 1 (landscape)

(c) Orientation value: 8 (d) Orientation value: 3

Figure 5: Different Exif orientation values. Four unrotated images taken within 1 minute.
Most image viewers automatically rotate the image so that it is orientated correctly.



IMG_1915.PG = IMG_1916.0PG,

(a) Orientation value: 6 (portrait)  (b) Orientation value: 1 (landscape)

(c) Orientation value: 8 (d) Orientation value: 3

Figure 6: Different Exif orientation values as displayed by image viewer. Most image viewers
automatically rotate the image so that it is orientated correctly.



Table 4: Accuracy vs. Precision truth table. Refer to image (see Figure|8)) for visual example.

Accuracy

Low

High

Precision

Low

“Shots” are striking all
over the target (refer-
ence), and do not have
a pattern.

Shots are striking close
to the center (refer-
ence), but are not
closely clustered.

High | Shots are clustered to- | Shots are clustered
gether, but far from | close together, and
the center (reference). | close to the center

(reference).

of cases between 0 and approximately 7 hours. The data points to a long time between
bursts of images, where lots of images are taken within a very short time. (The “rug” is a
1-D plot of where data exists, that might not be visible on the Y-axis.)

3.3 Accuracy and precision

Accuracy and precision are two important factors to consider when taking data measurements[3].
Both describe different aspects of data, and are important in understanding the totality of
the data. Accuracy reflects how close the data is to reality. Precision reflects how repro-
ducible the data is. Because both accuracy and precision can be qualitatively high or low,

it is possible to have one attribute be high while the other is low (see Figure .

3.4 Resolution

In some aspects, resolution can be akin to precision. Resolution is the smallest attribute that
can be resolved. Whether that is time (parts of a second), geographic position (parts of a
degree), or smallest addressable part of an image (pixel). Data and displays have resolution,
and they can be in conflict.

3.4.1 Data
How accurate is the GPS data as encoded by the Exif data?

“It depends. ... For example, GPS-enabled smartphones are typically accurate
to within a 4.9 m (16 ft.) radius under open sky. However, their accuracy
worsens near buildings, bridges, and trees. High-end users boost GPS accuracy
with dual-frequency receivers and/or augmentation systems. These can enable
real-time positioning within a few centimeters, and long-term measurements at

10



Histogram of seconds between images

1,200

1,000

Mumber of occurrences

400
1

MM M
0

I T T T T
1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Number of seconds since previous image

Figure 7: Histogram of seconds between images. The histogram shows a few cases of greater
than 2 months between successive pictures, and a very large number (1,299) of cases between
0 and approximately 7 hours. The data points to a long time between bursts of images, where
lots of images are taken within a very short time. (The “rug” is a 1-D plot of where data
exists, that might not be visible on the Y-axis.)

11



Low accuracy
Low precision

Low accuracy
High precision

High accuracy
Low precision

High accuracy
High precision

006

Figure 8: Accuracy versus precision. Image credit[3].




the millimeter level. ...the government commits to broadcasting the GPS signal
in space with a global average user range error (URE) of <7.8 m (25.6 ft.), with
95% probability.”

GPS Staff [1]

In practice, accuracy is how close a measured value is to the actual (true) value, and
precision is how close the measured values are to each other[3]. GPS positional data is
reported as a RATIONAL number of degrees relative to the Equator, or Prime Meridian.
The conversion from degrees to meters along the parallels of latitude is a function of the
sine of the latitude, and so will vary from one value at the equator. One degree of latitude,
called an arcdegree, covers about 111 kilometers (69 miles)[4]. One degree of longitude is
approximately the same length. The earth is not a perfect sphere, so one degree along
a longitudinal line will vary in length depending one where it is measured relative to the
equator.

4.9 meters represents 0.004% of a degree of latitude along the equator, or along a lon-
gitudinal line, so changes in the fifth decimal point of the longitudinal degrees of at least 4
represent a real change in location.

GPS positional data is 2 dimensional, so plotting it as a standard histogram is almost
meaningless (see Figure |§[), because distances are between each point and every other point.
In reality, we would expect the positions to be clustered. By changing our thought processes
to more closely match the positional data, we can construct a dendrogam of the positional
data, and cut the tree at what we consider to be a reasonable height. The height represents
how close the positions would be to be considered to be “close enough” to be the same
place (see Figure . The positional points are ordered so that entries along the X-axis
are points that are close to each other. From the close points a notional center point is
computed that represents all of its close points. Then the process is repeated for all the
notional points, until there is only one point. The vertical line represent how far the points
below it are from each member in the cluster. The red line is an arbitrary height where the
tree is cut. Points below the cut line are in the same cluster, and are assumed to be “close”
to the same location.

The idea of clustering the data is appealing, but abstract. We would have greater con-
fidence in the process, if we could see some results. So, we plotted both raw and clustered
data (see Figure[L1)). The clustered data fits well with our notional ideas.

3.4.2 Display

An additional limitation dealing with resolution and accuracy is the way in which the data
will be displayed. Specifically, it is the mapping of GPS positional data to the pixels where
the data will be displayed. Added to that is the resolution of how data will be selected from
the display. In theory, a display pointer should have single pixel resolution, but the human
operator/viewer does not have that level of acuity. Additionally, there are often “markers”

13



Number of occurrences

200,000

150,000

100,000

50,000

Histogram of distances between positions

T T T
5,000,000 10,000,000 15,000,000

Maters between positions

Figure 9: Histogram of meters between images.

14

T
20,000,000



Distance dendrogram of all positional data

15,000,000 20,000,000
|

10,000,000
|

Distance in meters

5,000,000

Points organized by closness to each other
There are 49 clusters, using a radius of 80467.2 meters (50 miles).

Figure 10: Dendrogram of meters between images. The positional points are ordered so that
entries along the X-axis are points that are close to each other. From the close points a
notional center point is computed that represents all of its close points. Then the process is
repeated for all the notional points, until there is only one point. The vertical line represent
how far the points below it are from each member in the cluster. The red line is an arbitrary
height where the tree is cut. Points below the cut line are in the same cluster, and are
assumed to be “close” to the same location.

15



Figure 11: Raw and clustered data on a world map. The purpose of the plot is to provide
confidence that the algorithms are preforming reasonably, and in accordance with our feel
for the data. Raw image GPS points are plotted in red. Clustered data is plotted as green
filled polygons.

16



added to the display to highlight different things, and these markers are usually much much
larger than one pixel. At the limit, different GPS positions may map to the same pixel,
markers overlaid on the display will obscure the pixel where the data lives, the mechanics of
the pointer pixel selection will return only one marker, so the other obscured markers can
not be seen, nor selected.

4 Data reduction

Clustering is a technique to reduce the number of raw data points to something that is more
manageable. Clustering was used in the previous section to identify and display positions
that were “close” to each other. While those clusters are important, and work well; they
don’t have the type of attributes that humans are used to dealing with. Positional data was
clustered using a 5 mile threshold. The cluster centers were used to identify nearby cities.
These representative cluster cities were plotted on a geographic display (see Figure .

The conversion from GPS positional data to city names was accomplished via the use of
two free services:

e Photon via the revgeo library. A free service, so access to it was throttled to be polite.
It was able to return cities for most of the positions.

e opencage_reverse via the opencage library. The service requires a free key to throttle
service. In the background, opencage claims to use a version of memoize to limit the
number of calls to their service.

Photon was used for the first cut of names for the cluster positions, and stored locally
for later use. Unnamed cluster positions were then labeled with the results from opencage.
opencage was able to identify locations like the Coral Sea, which is not near any city.

5 Exif UserComment field

The Exif standard supports a field named “UserComment.” The type of data is listed as
undefined, and must be less than 255 bytes. On a Linux distribution, the Exif data can be
viewed using this command:

exiftool IMG_1915.JPG

The UserComment Exif data can be updated using this command:

exiftool -m -UserComment="Created by Chuck Cartledge”
IMG_1915.JPG

17



Bayonne, f§&

Canyon @ity, Texas
San gntq%t?r‘rexas

5

Figure 12: A small area with labeled cities.

18



The UserComment field has the potential to be very useful. Here are a few examples of how
the UserComment field can be used/exploited:

e Hiding Malware Inside Images on GoogleUserContent (at https://blog.sucuri.net/
2018/07/hiding-malware-inside-images-on-googleusercontent.html)

e Malware Hidden Inside JPG EXIF Headers (at https://blog.sucuri.net/2013/07/
malware-hidden-inside-jpg-exif-headers.html)

e Return of the EXIF PHP Joomla Backdoor (at https://blog.sucuri.net/2015/11/
exif-php-joomla-backdoor.html)

o Attackers concealing malware in images uploaded to Google servers (at https://www.
scmagazineuk.com/attackers-concealing-malware-images-uploaded-google-servers/
article/1488518)

6 Linux port usage

The R implementation running under Linux appears to have a problem with ports. Then
again, it may not be viewed as a problem, just a fact of life because a port can be bidirectional
and should remain open until explicitly closed. When the using the revgeo function, it
appears that a port is opened to the web site to pass and retrieve data. This port is not
closed when the function call is completed. So, the port is considered open, even when there
is no expected future use for that same port during the program execution.

Under the Linux Operating System (at least Ubuntu 18.04 that I am using), the number
of file descriptors that an application can have open at any one time is 1,024. By default, the
number is found by using the “ulimit -n” command at the command line interface. This
value can be changed using different tools either permanently, or for the current session.
The important things is that there is a fixed number per session, and there is a potentially
unknown number of file descriptors that will be needed by the revgeo function.

The solution to this problem is to partition the number of times revgeo will be called
per process to something lower than the limit returned by the ulimit command. That is
what the revgoWorker.R and revgoWorkerSub.R scripts do. revgoWorker.R is a standalone
script called in the background by the main script (test05.R) and given a full list of positions
that need servicing. revgoWorker .R partitions that list into blocks of at most 200 positions,
and passes them onto the second standalone script revgoWorkerSub.R. revgoWorkerSub.R
uses up to 200 file descriptors (i.e., ports) while it is running, and when it dies, those file
descriptors (ports) are returned to the OS. revgoWorkerSub.R never approaches the ulimit
limit even though it is called multiple times. From the main script’s perspective, it passes a
list of positions, and receives back a list of positions.

Failure to partition the use of file descriptors in this manner can result in interesting pro-
gram behavior. If the main script uses all it’s file descriptors, any attempt to use additional

19


https://blog.sucuri.net/2018/07/hiding-malware-inside-images-on-googleusercontent.html
https://blog.sucuri.net/2018/07/hiding-malware-inside-images-on-googleusercontent.html
https://blog.sucuri.net/2013/07/malware-hidden-inside-jpg-exif-headers.html
https://blog.sucuri.net/2013/07/malware-hidden-inside-jpg-exif-headers.html
https://blog.sucuri.net/2015/11/exif-php-joomla-backdoor.html
https://blog.sucuri.net/2015/11/exif-php-joomla-backdoor.html
https://www.scmagazineuk.com/attackers-concealing-malware-images-uploaded-google-servers/article/1488518
https://www.scmagazineuk.com/attackers-concealing-malware-images-uploaded-google-servers/article/1488518
https://www.scmagazineuk.com/attackers-concealing-malware-images-uploaded-google-servers/article/1488518

descriptors results in default error messages about “too many files being open” with any
indication of where the file descriptors were consumed. This error message can come from
asking for help about a command (e.g. ?readLines), from attempting to read a file (e.g.
readLines(‘‘foo.txt’’)), or saving data (e.g. save(foo, file=‘‘foo.rds’’)). Closing
the R session, and rerunning the same code will allow the application to work, because the
new session will start without the old file descriptors.

7 Results

The end result of all the analysis and data wrangling, was a JavaScript enabled clickable web
page showing where the images were taken (see Figure . Clicking on a marker returns
a popup (see Figure . The popup contains the image associated with that location,
and a link to see a full scale image (see Figure . Exif data embedded in the image is
presented (see Table[5)). The R leaflet function creates the clickable page as a collection of
files, and loads the HTML into the default browser. Different browsers display the pages and
popups in different ways. In some browsers, the popup shows a reduced image. In others,
the image is full size, and you have to pan around the image to see what it is. Some browsers
do not support JavaScript, so nothing is displayed.

The R leaflet function does not appear to have options to make the same collec-
tion of files compatible across multiple browsers. While the raw JavaScript is available in
the leaflet files, there wasn’t enough interest in making execution compatible across all
browsers.

Table 5: Exif data embedded in one image. Data as reported by ExifTool Version Number
10.80.

Exif field name Value

File Size 1997 kB

File Modification Date/Time 2020:05:10 15:41:07-04:00
File Access Date/Time 2020:05:10 15:41:07-04:00
File Inode Change Date/Time 2020:05:10 15:41:07-04:00
File Permissions ITW-TI-T—

File Type JPEG

File Type Extension ipg

MIME Type image/jpeg

Exif Byte Order Big-endian (Motorola, MM)

(Continued on the next page.)

20



Table 5. (Continued from the previous page.)

Exif field name Value

Make Apple

Camera Model Name iPhone 6s
Orientation Horizontal (normal)
X Resolution 72

Y Resolution 72

Resolution Unit inches

Software 10.1.1

Modify Date 2016:12:31 18:13:44
Y Cb Cr Positioning Centered

Exposure Time 1/15

F Number 2.2

Exposure Program Program AE

ISO 800

Exif Version 0221

Date/Time Original
Create Date

2016:12:31 18:13:44
2016:12:31 18:13:44

Components Configuration Y, Cb, Cr, -
Shutter Speed Value 1/15
Aperture Value 2.2
Brightness Value -1.8708577
Exposure Compensation 0

Metering Mode
Flash

Multi-segment
Auto, Did not fire

Focal Length 4.2 mm

Subject Area 2004 1017 237 238
Run Time Flags Valid

Run Time Value 373112635431083
Run Time Epoch 0

Run Time Scale 1000000000

Acceleration Vector -0.9213895232 0.03489909734 -0.400359874

(Continued on the next page.)

21



Table 5. (Continued from the previous page.)

Exif field name

Value

Content Identifier

Sub Sec Time Original
Sub Sec Time Digitized
Flashpix Version

Color Space

Exif Image Width

Exif Image Height
Sensing Method

Scene Type

Exposure Mode

White Balance

Focal Length In 35mm Format
Scene Capture Type
Lens Info

Lens Make

Lens Model

GPS Latitude Ref

GPS Longitude Ref
GPS Altitude Ref

GPS Time Stamp

GPS Speed Ref

GPS Speed

GPS Img Direction Ref
GPS Img Direction
GPS Dest Bearing Ref
GPS Dest Bearing
GPS Date Stamp

GPS Horizontal Positioning Error

Compression
Thumbnail Offset

03BD167D-32D6-4BFA-96F6-4F6EA304C5BB

675
675
0100
sRGB
4032
3024

One-chip color area

Directly photographed

Auto

Auto

29 mm
Standard
4.15mm /2.2
Apple

iPhone 6s back camera 4.15mm f/2.2

North

West

Above Sea Level
23:13:44.24
km/h

10.92

Magnetic North
114.2734694
Magnetic North
114.2734694
2016:12:31

10 m

JPEG (old-style)
2078

22

(Continued on the next page.)



Table 5. (Continued from the previous page.)

Exif field name Value
Thumbnail Length 10734

XMP Toolkit XMP Core 5.4.0
Region Area Y 0.335500

Region Area W 0.059000

Region Area X 0.497500

Region Area H 0.079000

Region Area Unit normalized
Region Type Face

Region Extensions Angle Info Yaw 0

Region Extensions Angle Info Roll 0

Region Extensions Confidence Level 1000

Region Extensions Time Stamp 8954696850620
Region Extensions Face ID 4

Region Applied To Dimensions H 3024

Region Applied To Dimensions W 4032

Region Applied To Dimensions Unit pixel

Image Width 4032

Image Height 3024

Encoding Process Baseline DCT, Huffman coding
Bits Per Sample 8

Color Components 3

Y Cb Cr Sub Sampling YCbCr4:2:0 (2 2)
Aperture 2.2

GPS Altitude
GPS Date/Time
GPS Latitude
GPS Longitude
GPS Position
Image Size

Megapixels

49.9 m Above Sea Level

2016:12:31 23:13:44.247

21 deg 35’ 29.36” N

69 deg 3’ 53.79” W

21 deg 357 29.36” N, 69 deg 3’ 53.79” W
4032x3024

12.2

(Continued on the next page.)

23



Table 5. (Continued from the previous page.)

Exif field name Value

Run Time Since Power Up 4 days 7:38:32

Scale Factor To 35 mm Equivalent 7.0

Shutter Speed 1/15

Create Date 2016:12:31 18:13:44.675

Date/Time Original 2016:12:31 18:13:44.675

Thumbnail Image (Binary data 10734 bytes, use -b option to extract)
Circle Of Confusion 0.004 mm

Field Of View 63.7 deg

Focal Length 4.2 mm (35 mm equivalent: 29.0 mm)
Hyperfocal Distance 1.82 m

Light Value 3.2

8

(Last page.)

Future work

The current/embedded R scripts demonstrate that a clickable, JavaScript enabled photo
album can be created and demonstrated. There are a number of ways that the end product
can be improved, including:

1.

Rework the leaflet file structure so that it is transportable. The current implementation
exists only so long as the R session is active, and is destroyed when the session ends.

Currently, each popup window has exactly one image. It would make more sense to
have multiple images based on the number of original positions that were collected into
the currently selected cluster.

. Allow the user to select different cluster sizes when creating the leaflet.

Order the images in the popup by time.
Use the Exif embedded thumbnails vice full sized images.

Have the size of the cluster be determined dynamically by the current geographic zoom
factor. The number of clusters could remain fixed, or under user control.

24



Bl /tmp/RempzyhxsO/viewhtr X

Yineo e =

Figure 13: A geographically oriented picture album.

9 Conclusion

We investigated 1,592 images. almost all created by an iPhone 6s over the course of several
years. Not all cameras insert Exif data, of any kind into the image (see Figure .
For all images:

e Approximately 19% had bad or non-existent GPS positional data.
e Approximately 21% had either bad or non-existent GPS temporal or positional data.

e Approximately 46% were taken in landscape mode.

25



Morth Atlantic Ocean
2016:12:31 18:13:44
Click here for a full sized image.

Figure 14: A popup from the album.

26



&y

. : ,,‘.n.. .4«.4;.::4, I < wamis

Figure 15: A linked image.

27



——

Figure 16: An image without Exif data. Based on the clothes and the type of location, the
picture was probably taken onboard a Celebrity cruise ship either April or August 2004, in
either the North Atlantic or Baltic Sea. The camera used to take the image did not support
Exif data.

28



A Miscellaneous files

A collection of miscellaneous files mentioned in the report.

o IMG-0560.JPG — A sample image with Exif data.
e library.R — R support library file.
e P8150008.jpeg — A sample image without Exif data. &

e revgoWorker.R — R script to control the revgoWorkerSub.R script.

e revgoWorkerSub.R — Accesses the Photon geocoder service to convert positional data

to city name.

e test05.R — R script used to analyze the Exif data, and generate images.

B References

1]

2]

GPS Staff, Gps accuracy, https://www.gps.gov/systems/gps/performance/
accuracy/, 2020.

JEITA Staff, Fxchangeable image file format for digital still cameras: Ezif version 2.2,
Japan Electronics and Information Technology Industries Association (2002).

Math is Fun Staff, Accuracy and precision, https://www.mathsisfun.com/
accuracy-precision.html] 2020.

National Geographic Staff, Latitude, https://www.nationalgeographic.org/
encyclopedia/latitude/, 2020.

PhotoMetaData  Staff,  Standards: Exif, https://www.photometadata.org/
META-Resources-metadata-types-standards-Exif, 2020.

29






"Chuck Cartledge"


miscFileNames <- function()
{
    returnValue <- list(
        latLongFile="/tmp/latlong.rdat",
        citiesFile="../Data/cities.rdat",
        dataSaveFile="../Data/dataAll.rdat"
    )

    return(returnValue)
}


"Chuck Cartledge"





"Chuck Cartledge"


library(magrittr)
library(revgeo)
library(dplyr)


args <- commandArgs(trailingOnly = TRUE)

latLonFile <- args[1]

citiesFile <- args[2]

sleepyTime <- 10

load(latLonFile)

cities <- data.frame()

tempLatLonFile <- tempfile()
tempCitiesFile <- tempfile()

leftToDo <- nrow(main_sub)

repeat
{
    indices <- seq(1, min(leftToDo, 200))

    main_sub_t <-  main_sub[indices,]

    latlong <- main_sub_t %>%
        dplyr::select(latitude, longitude) %>%
        unique() %>%
        dplyr::mutate(index = row_number())

    save(latlong, file=tempLatLonFile)

    command <- sprintf("Rscript /home/chuck/CLC-Ent/Travels/Scripts/revgoWorkerSub.R %s %s",
                      tempLatLonFile,
                      tempCitiesFile)
    
    system(command, intern=TRUE)

    load(tempCitiesFile)

    cities <- rbind(cities, citiesPartial)

    main_sub <- main_sub[-indices,]

    leftToDo <- nrow(main_sub)
    
    if(leftToDo == 0)
    {
        break
    }
    print(sprintf('Sleeping for %.0f seconds.', sleepyTime))
    Sys.sleep(sleepyTime)
}

save(cities, file=citiesFile)



"Chuck Cartledge"


library(magrittr)
library(revgeo)
library(dplyr)

args <- commandArgs(trailingOnly = TRUE)

latLongFile <- args[1]

citiesFile <- args[2]

load(latLongFile)

citiesPartial <- revgeo(latlong$longitude, latlong$latitude,
                 provider =  'photon', output = 'frame')  %>% 
    dplyr::mutate(index = row_number(),country = as.character(country)) %>%
    ## filter(country == 'United States of America') %>% 
    dplyr::mutate(location = paste(city, state, sep = ", ")) %>% 
    dplyr::select(index, location) %>% 
    dplyr::left_join(latlong, by="index") %>% 
    dplyr::select(-index)

save(citiesPartial, file=citiesFile)


"Chuck Cartledge"


## https://gis.stackexchange.com/questions/17638/clustering-spatial-data-in-r

rm(list=ls())

library(htmltools)
library(exifr)
library(dplyr)
library(leaflet)
library(sp)
library(rgdal)
library(geosphere)
library(raster)
library(dismo)
library(rgeos)
library(magrittr)
library(revgeo)
library(opencage)
library(rworldmap)
library(rworldxtra)


source("library.R")

prettyAxis <- function(numberYAxis, numberXAxis)
{
    ticks <- pretty(c(0, par()$usr[4]), n=numberYAxis)
    axis(2, at=ticks, labels=prettyNum(ticks, big.mark=",", scientific=FALSE))

    
    ticks <- pretty(c(0, par()$usr[2]), n=numberXAxis)
    axis(1, at=ticks, labels=prettyNum(ticks, big.mark=",", scientific=FALSE))
}

plotLowResWorld <- function(dat2, ci, fileName="/tmp/temp.png", limits=c(-90, 90, -180, 180))
{
    ## http://www.milanor.net/blog/maps-in-r-plotting-data-points-on-a-map/
    if (is.null(fileName) == FALSE)
    {
        setupPNG(fileName)
    }

    newmap <- getMap(resolution = "high")
    ## plot(newmap)
    plot(newmap,
         xlim=limits[3:4],
         ylim=limits[1:2])
    points(dat2$GPSLongitude, dat2$GPSLatitude, col="red")
    plot(ci@polygons, add=TRUE, col="green")

    if (is.null(fileName) == FALSE)
    {
        dev.off()
    }
    
}

setupPNG <- function(fileName)
{
    png(filename=fileName, width=960, height=960, type="cairo")
}

histogramOfDistances <- function(distancesInMeters, fileName="/tmp/temp.png")
{

    if (is.null(fileName) == FALSE)
    {
        setupPNG(fileName)
    }

    hist(distancesInMeters,
         xlab="Meters between positions",
         ylab="Number of occurrences",
         main="Histogram of distances between positions",
         yaxt="n",
         xaxt="n")
    
        prettyAxis(numberYAxis=5, numberXAxis=5)

    if (is.null(fileName) == FALSE)
    {
        dev.off()
    }
    
}


histogramOfDeltaTimes <- function(dat, fileName="/tmp/temp.png")
{
    format <- "%Y:%m:%d %H:%M:%S"

    badImageTime <- "2007:12:07 21:57:35"
    
    aaa <- dat$DateTimeOriginal

    indices <- c(which(aaa == badImageTime))
    
    indices <- c(indices, which(is.na(aaa)))

    aaa <- aaa[-indices]

    aaa <- as.numeric(as.POSIXct(aaa, format=format))

    ## aaa has unix seconds

    aaa <- sort(aaa)
    
    bbb <- rep(0, length(aaa))

    for (i in 2:length(aaa))
    {
        bbb[i] <- aaa[i] - aaa[i-1]
    }


    if (is.null(fileName) == FALSE)
    {
        setupPNG(fileName)
    }
    
    hist(bbb, breaks=seq(0, range(bbb)[2], length=200),
         xlab="Number of seconds since previous image",
         ylab="Number of occurrences",
         main="Histogram of seconds between images",
         yaxt="n", xaxt="n")
    prettyAxis(numberYAxis=7, numberXAxis=6)

    rug(jitter(bbb), col="red")

    if (is.null(fileName) == FALSE)
    {
        dev.off()
    }

}

vennDiagramWorker <- function(categoryNames, baddies, fileName)
{
    library(grid)
    library(futile.logger)
    library(VennDiagram)
    library(png)
    
    venn.plot <- venn.diagram(
        x=list(a=which(baddies[,1] == TRUE),
           b=which(baddies[,1] == FALSE),
           c=which(baddies[,2] == TRUE),
           d=which(baddies[,2] == FALSE)
           ),
        category.names=categoryNames,
        fill = c("cornflowerblue", "green", "yellow", "darkorchid1"),
        alpha = 0.50,
        margin=0.2,
        cex = 1.5,
        fontfamily = "serif",
        cat.fontface="bold",
        ## fontface = "bold",
        filename=fileName,
        output=TRUE,
        imagetype="png"
    )

    invisible(venn.plot)
}

timesVennDiagram <- function(dat, fileName="/tmp/temp.png")
{
    baddies <- cbind(badDateTime=(is.na(dat[["DateTimeOriginal"]]) == TRUE),
                     badGPSTime=(is.na(dat[["GPSTimeStamp"]]) == TRUE)
                     )


    categoryNames=c(
        "DateTime is NA",
        "DateTime is OK",
        "TimeStamp is NA",
        "TimeStamp is OK"
    )

    vennDiagramWorker(categoryNames, baddies, fileName)        

    invisible(baddies)
}

positionalVennDiagram <- function(dat, fileName="/tmp/temp.png")
{

    baddies <- cbind(
        badLatitude=(is.na(dat[["GPSLatitude"]]) == TRUE),
        badLongitude=(is.na(dat[["GPSLongitude"]]) == TRUE)
    )
    
    categoryNames=c(
        "Lat. is NA",
        "Lat. is OK",
        "Lon. is NA",
        "Lon. is OK"
    )
    
    vennDiagramWorker(categoryNames, baddies, fileName)        

    invisible(baddies)
}

dataVennDiagram <- function(dat, fileName="/tmp/temp.png")
{

    baddies <- cbind(badTime=(is.na(dat[["GPSTimeStamp"]]) == TRUE),
                     badLatitude=(is.na(dat[["GPSLatitude"]]) == TRUE),
                     badLongitude=(is.na(dat[["GPSLongitude"]]) == TRUE)
                     )

    categoryNames=c(
        "Time is NA",
        "Time is OK",
        "Lat. is NA",
        "Lat. is OK"
    )
    vennDiagramWorker(categoryNames, baddies, fileName)        

    invisible(baddies)
}


normalizeImageOrientation <- function(datTwo)
{
## http://sylvana.net/jpegcrop/exif_orientation.html
## https://www.daveperrett.com/articles/2012/07/28/exif-orientation-handling-is-a-ghetto/

    localTurner <- function(data, orientation)
    {
        indices <- which(data$Orientation == orientation)

        print(sprintf("Converting %.0f images with orientation %.0f.",
                      length(indices), orientation))

        tempFile <- tempfile()
        for (i in indices)
        {
        command <- sprintf("convert %s -auto-orient %s ; mv %s %s",
                           data$SourceFile[i],
                           tempFile,
                           tempFile,
                           data$SourceFile[i]
                           )
        system(command, intern=FALSE)
        }
    }

    orientations <- unique(sort(datTwo$Orientation))

    for (orientation in orientations)
    {
        if (orientation == 1)
        {
            indices <- which(datTwo$Orientation == 1)
            print(sprintf("Not converting %.0f images with orientation of %.0f.",
                          length(indices), orientation))
            next
        }

        localTurner(datTwo, orientation)
    }
}


getEXIFData <- function(saveFileName, sourceDirectories)
{
## https://lwn.net/Articles/249461/     exiftool -m -UserComment="new user comment" DSCN0432.JPG

    if (file.exists(saveFileName) == FALSE)
    {
        files <- c()

        for (dir in sourceDirectories)
        {
            files <- c(files, list.files(path=dir,
                                         pattern = "*.JPG",
                                         full.names=TRUE)
                       )
        }

        dat <- read_exif(files)

        save(dat, file=saveFileName)
    }

    load(saveFileName)

    dat2 <- dplyr::select(dat,
                   SourceFile, DateTimeOriginal,
                   GPSLongitude, GPSLatitude,
                   GPSTimeStamp,
                   Orientation)

    returnValue <- list(dat=dat,
                        dat2=dat2)

    return(returnValue)
}

getCityData <- function(citySaveFile, dat2, xy)
{
    latitude <- dat2$GPSLatitude
    longitude <- dat2$GPSLongitude

    main_sub <- data.frame(longitude=longitude,
                           latitude=latitude,
                           X=1:length(latitude),
                           ## cluster=1:length(latitude),
                           cluster=xy$clust,
                           country="")

    if (file.exists(citySaveFile) == FALSE)
    {
        fileNames <- miscFileNames()

        citiesSaveFile <- fileNames$citiesFile

        dataSaveFile <- fileNames$dataSaveFile

        tempLocationFile <- tempfile()

        save(main_sub, file=tempLocationFile)

        command <- sprintf("Rscript /home/chuck/CLC-Ent/Travels/Scripts/revgoWorker.R %s %s",
                           tempLocationFile,
                           citiesSaveFile)

        system(command, intern=TRUE)

        load(citiesSaveFile)


        save(cities, file=citySaveFile)
    }

    load(citySaveFile)

    dataAll <- main_sub %>%
        dplyr::left_join(cities, by=c("latitude","longitude")) %>%
        dplyr::select(X, latitude, longitude, country, cluster, location)


    returnValue <- list(cities=cities,
                        dataAll=dataAll)

    return(returnValue)
}


eliminateNAs <- function(dat, columns)
{
    for (col in columns)
    {
        NAs <- which(is.na(dat[[col]]) == TRUE)
        rows <- 0
        if (length(NAs) > 0)
        {
            rows <- length(NAs)
            dat <- dat[-NAs,]
        }

        print(sprintf("Eliminating %.0f rows because %s is NA.",
                          rows,
                          col))
    }

    return(dat)
}

main <- function()
{
    exifDataFileName <- "../Data/exifData.rds"
    cityDataFileName <- "../Data/cityData.rds"

    startTime <- Sys.time()

    temp <- getEXIFData(exifDataFileName,
                        sourceDirectories=c("/tmp/Pictures/DCIM/101APPLE",
                                            "/tmp/Pictures/DCIM/100APPLE"
                                            ))

    dat2 <- temp$dat2

    timesVennDiagram(dat2, fileName="../Images/timesVennDiagram.png")
    positionalVennDiagram(dat2, fileName="../Images/positionalVennDiagram.png")
    dataVennDiagram(dat2, fileName="../Images/dataVennDiagram.png")
    histogramOfDeltaTimes(dat2, fileName="../Images/timeBetweenImages.png")
    
    dat2 <- eliminateNAs(dat2, c("GPSLatitude", "GPSLongitude", "GPSTimeStamp"))

    normalizeImageOrientation(dat2)

    xy <- SpatialPointsDataFrame(
        matrix(c(dat2$GPSLongitude, dat2$GPSLatitude), ncol=2),
        data.frame(ID=seq(1:length(dat2$GPSLongitude))),
        proj4string=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84"))

    mdist <- distm(xy, fun=distGeo)

    histogramOfDistances(mdist, fileName="../Images/distancesHistogram.png")
    
    hc <- hclust(as.dist(mdist), method="complete")

    ## hc <- hclust(as.dist(mdist), method="single")

                                        # define the distance threshold, in this case 40 m
    thresholdMiles <- 50
    threshold <- thresholdMiles * 5280 * 12 * 2.54 # centimeters
    threshold <- threshold / 100 #  meters
    d <- threshold

                                        # define clusters based on a tree "height" cutoff "d" and add them to the SpDataFrame
    xy$clust <- cutree(hc, h=d)

    setupPNG("../Images/distancesDendrogram.png")
    plot(hc, yaxt="n",
         ylab="Distance in meters",
         xlab="Points organized by closness to each other",
         main="Distance dendrogram of all positional data",
         sub=sprintf("There are %.0f clusters, using a radius of %.1f meters (%.0f miles).",
                  max(xy$clust), d, thresholdMiles))

    ticks <- pretty(c(0, par()$usr[4]), n=5)
    axis(2, at=ticks, labels=prettyNum(ticks, big.mark=",", scientific=FALSE))
    abline(h=d, col="red")

    dev.off()
    
                                        # expand the extent of plotting frame
    xy@bbox[] <- as.matrix(extend(extent(xy),0.001))

                                        # get the centroid coords for each cluster
    cent <- matrix(ncol=2, nrow=max(xy$clust))
    for (i in 1:max(xy$clust))
    {
                                        # gCentroid from the rgeos package
        cent[i,] <- gCentroid(subset(xy, clust == i))@coords
    }
                                        # compute circles around the centroid coords using a 40m radius
                                        # from the dismo package
    scaler <- 1
    ci <- circles(cent, d=d*scaler, lonlat=TRUE)

    temp <- getCityData(cityDataFileName, dat2, xy)

    data_all <- temp$dataAll

    endTime <- Sys.time()

    print(sprintf("Processing took %.0f seconds.", difftime(endTime, startTime) * 60))


    plotLowResWorld(dat2, ci, fileName="../Images/highResWorld.png")
    
    myCities <- data_all %>%
        dplyr::group_by(location) %>%
        dplyr::slice(1) %>% # takes the first occurrence if there is a tie
        dplyr::ungroup()


    setupPNG("../Images/labeledCities.png")    
    newmap <- getMap(resolution = "high")
    ## plot(newmap)
    plot(newmap,
         xlim=c(-105, -75),
         ylim=c(25, 40)
         )
    points(dat2$GPSLongitude, dat2$GPSLatitude, col="red")
    plot(ci@polygons, add=TRUE, col="green")

   
    clusterLabeled <- c()

    for (i in 1:nrow(myCities))
    {
        if ((myCities$cluster[i] %in% clusterLabeled) == FALSE)
        {
            temp <- gsub(", State Not Found", "", myCities$location[i])
            temp <- gsub("City Not Found", "", temp)

            text(x=myCities$longitude[i],
                 y=myCities$latitude[i],
                 labels=temp)
            clusterLabeled <- c(clusterLabeled, myCities$cluster[i])
        }
    }

    dev.off()

    unlabeledClusters <- which((1:max(myCities$cluster) %in% clusterLabeled) == FALSE)

    for (un in unlabeledClusters)
    {
        print(data_all[which(data_all$cluster == un),])
    }


    temp <- dat2
    names(temp) <- c("SourceFile", "DateTimeOriginal",
                     "longitude", "latitude",
                     "TimeStamp", "Orientation")

    cities <- left_join(x=data_all,
                        y=temp,
                        by=c("latitude", "longitude"))
    indices <- which(grepl("Not Found", cities$location) == TRUE)

    for (i in indices)
    {
        temp <- opencage_reverse(latitude=cities$latitude[i],
                                 longitude=cities$longitude[i],
                                 key="98b933741bca4ce4935fa04d1a5f8ea4")
        temp <- as.data.frame(temp, stringsAsFactors=FALSE)
        cities$location[i] <- as.character(temp$results.formatted[1])
    }

    cities$iframe <- paste('<iframe width="300", height="300", src="file://', cities$SourceFile, '"</iframe>',
                           sep="")
    cities$fullImage <- paste('<a href="file://', cities$SourceFile,'" target="_blank">Click here for a full sized image.</a>',
                              sep="")

    ## leaflet(cities) %>%
    ##     addProviderTiles("Esri.WorldImagery") %>%
    ##     addMarkers(~ longitude, ~ latitude,
    ##                popup = paste(htmlEscape(~DateTimeOriginal)),
    ##                label=~htmlEscape(location))


    leaflet(cities) %>%
        addProviderTiles("Esri.WorldImagery") %>%
        addMarkers(~ longitude, ~ latitude,
                   popup=~paste(location, DateTimeOriginal,
                                fullImage,
                                iframe,
                                sep="<br>"),
                   label=~htmlEscape(location))

    leaflet(cities) %>%
        addProviderTiles("Esri.WorldImagery") %>%
        addMarkers(~ longitude, ~ latitude,
                   popup = ~htmlEscape(DateTimeOriginal),
                   label=~htmlEscape(location))

}


"Chuck Cartledge"

https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.mathsisfun.com/accuracy-precision.html
https://www.mathsisfun.com/accuracy-precision.html
https://www.nationalgeographic.org/encyclopedia/latitude/
https://www.nationalgeographic.org/encyclopedia/latitude/
https://www.photometadata.org/META-Resources-metadata-types-standards-Exif
https://www.photometadata.org/META-Resources-metadata-types-standards-Exif

