
Using Big Data Tools when there are Holes in the Data

Tidewater Big Data Enthusiasts
Chuck Cartledge

Developer

July 26, 2016 at 9:34pm

Contents

List of Figures i

List of Tables ii

1 Introduction 1
1.1 Hbase origins . 1
1.2 What’s ahead . 1

2 HBase compared to Relational Database Systems 2

3 Approach 5

4 Results 7
4.1 IMDb explorations . 7
4.2 NDBC explorations . 17

5 Conclusion 28

A Selected stations 30

B Misc. files 35

C References 37

i

List of Figures

1 A columnar database showing column families. 3
2 HBase ecosystem. 6
3 Internet Movie Database home page. 9
4 IMDb Alternate Interfaces home page. 10
5 IMDb Alternate Interfaces FTP home page. 11
6 A partial dump of the IMDb movies listing. 12
7 A partial dump of the IMDb crazy credits listing. 13
8 A partial dump of the IMDb director listing. 14
9 Histogram of crazy credits per movies. 15
10 Histogram of directors per movie. 16
11 National Data Buoy Center (NDBC) home page. 18
12 NDBC real time data home page. 19
13 NDBC real time data download page. 20
14 Sample data from station 41013. 21
15 Sample station location data. 22
16 Buoy reporting status worldwide. 23
17 Buoy reporting status near continental USA. 24
18 Buoy reporting status near Virginia. 25
19 Station 41013 wind file. 26
20 Buoy reporting status worldwide (bad data). 27

List of Tables

1 Example of a RDBMS table. 4
2 Example of a columnar database. 4
3 A collection of interesting stations. 30

ii

1 Introduction

We’ll explore the world of columnar databases. Databases that have rows and columns,
but the intersection of a row and a column can have 0 or more values. The values can be
versioned, timestamped for automatic deletion, and other neat features. We’ll look at HBase
(one of many databases built on top of Hadoop), to explore some of the data in the Internet
Movie Database. HBase is used by Adobe, LinkedIn, Netflix, Spotify, and others.

1.1 Hbase origins

In 2008, Google published a paper describing their “BigTable” technology, explaining in
detail its internal structure, benefits, and limitations. BigTable is the underlying technology
in many of Google’s applications.

“A Bigtable is a sparse, distributed, persistent multidimensional sorted map.
The map is indexed by a row key, column key, and a timestamp; each value in
the map is an uninterpreted array of bytes.”

Chang, et al. [2]

BigTable was created to overcome some the limitations of the Google File System, and
the Map Reduce technologies. HBase is a NoSQL database that primarily works on top of
Hadoop. HBase is based on the BigTable storage architecture. HBase inherits the storage
design from the column-oriented databases and the data access design from the keyvalue
store databases where a key-based access to a specific cell of data is provided[3].

BigTable uses row-keys to locate data. The row-keys are arbitrary strings. Each read
or write on a row is atomic, regardless of the number of columns in the row. Row-keys
are kept in lexicographic order. Column keys are grouped into “column families”, and data
is accessed using “family:qualifier” syntax. Where column names must be printable, byt
qualifiers can be arbitrary strings. Data in a row in timestamped, where default to current
time in microseconds, or a value set by the user. A garbage collection operation runs in the
background to automatically delete old data.

1.2 What’s ahead

We’ll look at two different sources of data in different manners to see how HBase can be
used. First we look at the Internet Movie Database (IMDb) to answer a couple of basic
questions about movies:

1. How many “crazy credits” are there per movie, and

2. How many directors there are per movie.

Crazy credits are credits added to a movie that are outside the “normal” set of credits, as
determined by the IMDb. An example of a crazy credit from the 1983 movie Scarface is:

“Enjoy yourself, every day above ground is a good day.” ANONYMOUS, MIAMI 1981
Secondly we will look at real-time data from the National Data Buoy Center (NDBC)1.

The NBDC monitors and makes available and water measurements from each of the ap-
proximately 1,000 floating and stationary buoys it monitors. We will download the buoy
measurements and buoy location to see which buoys are active.

We will use Python to to collect data from different sources, update data an HBase data
base, and present the results of our analysis.

2 HBase compared to Relational Database Systems

A Relational Database Management System (RDBMS) is a row oriented system. Meaning
that each entry in a table has the same number of columns (see Figure 1). Data in RDBMS
is created, reported, updated, and deleted (CRUD operations) by using Structured Query
Language (SQL) commands. By contrast, HBase is a columnar, or column oriented database.
Data in a column is stored together, and every “row” may have a different number of columns.
Expanding the data from the previous example (see Table 1) with additional (and sometimes)
missing data, we can get to a columnar database structure (see Table 2).

In general, it is very expensive to add new columns to a RDBMS table. It is very
inexpensive to add a new column to a columnar database, or to change the type or number
of elements in a columnar cell. Sometimes a column is a columnar database is called a
“column family” in order to make it explicit that more than one value can be “stored” in a
cell.

1http://www.ndbc.noaa.gov/data/realtime2/

2

http://www.ndbc.noaa.gov/data/realtime2/

Figure 1: A columnar database showing column families. Image from [4] showing two column
families, where different (possibly missing values) in different cells.

3

T
ab

le
1:

E
x
am

p
le

of
a

R
D

B
M

S
ta

b
le

.
E

x
am

p
le

d
at

a
ta

ke
n

fr
om

[6
].

E
ac

h
ro

w
an

d
co

lu
m

n
in

te
rs

ec
ti

on
(a

ce
ll
)

h
as

th
e

sa
m

e
ty

p
e

of
d
at

a.
In

so
m

e
ca

se
s

th
e

d
at

a
m

ay
b

e
N

U
L

L
,

b
u
t

th
e

ce
ll

re
m

ai
n
s.

E
m

p
lo

y
e
e

ID
F

ir
st

N
a
m

e
L

a
st

N
a
m

e
E

m
a
il

D
e
p
a
rt

m
e
n
t

ID

10
00

A
ru

n
J
ay

ar
am

ar
u
n
@

so
ft

w
ar

ed
ev

el
op

er
.c

om
10

0

10
01

M
an

o
j

S
h
an

ka
r

m
an

of
@

so
ft

w
ar

ed
ev

el
op

er
.c

om
10

0

10
02

S
ya

m
S
u
n
d
ar

sy
am

@
so

ft
w

ar
ed

ev
el

op
er

.c
om

10
2

T
ab

le
2:

E
x
am

p
le

of
a

co
lu

m
n
ar

d
at

ab
as

e.
E

ac
h

ro
w

m
an

y
h
av

e
a

d
iff

er
en

t
n
u
m

b
er

of
co

lu
m

n
s,

an
d

th
e

co
n
te

n
ts

of
ea

ch
ce

ll
(t

h
e

in
te

rs
ec

ti
on

of
a

ro
w

an
d

co
lu

m
n
)

m
ay

h
av

e
a

d
iff

er
en

t
n
u
m

b
er

an
d

ty
p

e
of

d
at

a
el

em
en

ts
.

R
o
w

k
e
y

N
a
m

e
C

o
n
ta

ct
D

e
p
t

H
o
b

b
y

10
00

“F
ir

st
:A

ru
n
”,

“L
as

t:
J
ay

ar
am

”
“E

m
ai

l:
ar

u
n
@

so
ft

w
ar

ed
ev

el
op

er
.c

om
”,

“m
ob

il
e:

55
5-

12
3-

45
67

”
“p

ri
m

ar
y
:1

00
”,

“s
ec

on
d
ar

y
:1

03
”

10
01

“F
ir

st
:M

an
o
j,

“L
as

t:
S
h
an

ka
r

“E
m

ai
l:
m

an
of

@
so

ft
w

ar
ed

ev
el

op
er

.c
om

”
“p

ri
m

ar
y
:1

00
”

“m
ai

n
:f

o
os

b
al

l”

10
02

“F
ir

st
:S

ya
m

,
“L

as
t:

S
u
n
d
ar

“E
m

ai
l:
sy

am
@

so
ft

w
ar

ed
ev

el
op

er
.c

om
”,

“l
an

d
:5

55
-1

23
-4

56
8”

“p
ri

m
ar

y
:1

02
”

“m
ai

n
:p

ai
n
tB

al
l”

,
“s

ec
-

on
d
ar

y
:f

o
ot

b
al

l”

4

3 Approach

We were interested in exploring a full up HBase installation, so that meant installing and
setting up the following pieces of software:

1. Apache Hadoop - is an open-source software framework for distributed storage and dis-
tributed processing of very large data sets on computer clusters built from commodity
hardware[7].

2. Hadoop Distributed File System (HDFS) - a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems[5].

3. Thrift server - Thrift is a software framework that allows you to create cross-language
bindings. In the context of HBase, Java is the only first-class citizen. However, the
HBase Thrift interface allows other languages to access HBase over Thrift by connecting
to a Thrift server that interfaces with the Java client[1].

4. HBase a column-oriented database that prides itself on consistency and scaling out[4].

The relationship between these pieces of software can be thought of as a stack (see
Figure 2).

We installed these versions of software for this exploration:

1. Hadoop - 2.7.2

2. HBase - 1.1.0

3. Thrift - 0.9.1

4. Ptyhon - 2.7.12

5. Java - openjdk 1.8.0 91

Hadoop, Hbase, and Thrift are Java applications, and as such are subject to the limitions
imposed by the Java Virtual Machine (JVM). These include the number of JVMs that can be
running simultaneously within the RAM installed on the host motherboard. If the collective
memory JVM requirements exceed the available RAM, then the host operating system will
start using swap space on the drive and slow performance considerably.

5

Figure 2: HBase ecosystem. Image from [1].

6

4 Results

We present the results of our explorations into the IMDb and NDBC.

4.1 IMDb explorations

Explorations of the IMDb depends on three data files that can be downloaded from the
IMDb (see Figure 3)23. Raw IMDb data files are available by following links in the IMDb
Alternate Interfaces page (see Figures 4 and 5). The files we are interested in are:

1. movies.list.gz - a formatted list of all movies, games, and television shows (see
Figure 6). Each line (between the header and trailer) is one video entry. Television
and video games have leading characters to distinguish the type of entry. The most
reliable way to identify movies, is to compare the last field with the next to last field.
The last field is a year, and if the next to last is the same year only with parentheses
around it, then the entry is a year. Otherwise it something else and we don’t care
about it.

2. crazy-credits.list.gz - a loosely formatted listing of crazy credits in movies, games,
and television shows (see Figure 7). An entry starts with a line with a hash mark (#)
as the first character, and continues until an empty line. A movie entry has a year
bracketed by parentheses as the last field. Each crazy credit has a hyphen as the first
character in a line, and a credit may span more than one line.

3. directors.list.gz - formatted list of directors for movies, games, and television
shows (see Figure 8). The director’s file is more complex than the other IMDb files we
process. A director’s efforts are bracketed by blank lines. The first line contains the
director’s name, tab separated from the first effort. Each effort after that is offset from
the left by some number of tabs to make the printed output look nice. Each credit
field that has a year bracketed by parentheses is a movie.

Algorithmically this is how we processed and explored the IMDb database:

1. Created an empty table with two column families:credit, and director. We were able to
create the column families at the beginning because we knew in advance the columns
we were interested in. We could just have easily created the column when we added
the first credit or director entry.

2. Scanned the movies.list.gz file for all movies and added them as row keys.

2http://www.imdb.com/
3ftp://ftp.fu-berlin.de/pub/misc/movies/database/

7

http://www.imdb.com/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3. Scanned the directors.list.gz file for movie directors and when found, updated
count of directors for that movie. If a movie was found in the director’s file that was
not in the movies file, then added the director entry would automatically create a new
entry in the database.

4. Scanned the crazy-credits.list.gz file for movie credits (similar in concept as the
processing for the director’s file).

At the end of this processing, the database has a “table” indexed by movie name where
each “row” may, or may not have an entry for the number of credits an directors.

5. Create a histogram of the number of crazy credits per movie (see Figure 9). Of the
675,271 movies extracted from the IMDb data files, there were 12,844 that had some
sort of crazy credit.

6. Create a histogram of the number of directors per movie (see Figure 10). Of the
675,271 movies extracted from the IMDb data files, there were 714,789 directors. Close
examination of the histogram shows that there were a few movies that did not have
any directors listed, and a relative handful (less that 40,000) that had more than one
director. While that number may seen high, it is only about 6% of all movies had more
than one director.

8

Figure 3: Internet Movie Database home page. This image was captured 23 July 2016 from
http://www.imdb.com/. Files can be downloaded following links in the IMDb alternate
interfaces page.

9

http://www.imdb.com/

Figure 4: IMDb Alternate Interfaces home page. Raw IMDb files can be found by following
links on this page:http://www.imdb.com/interfaces

10

http://www.imdb.com/interfaces

Figure 5: IMDb Alternate Interfaces FTP home page. Raw IMDb files can be downloaded
from this page:ftp://ftp.fu-berlin.de/pub/misc/movies/database/

11

ftp://ftp.fu-berlin.de/pub/misc/movies/database/

Figure 6: A partial dump of the IMDb movies listing. The colored areas represent some
number of tabs in the line. The number of tabs varies from line to line and are used to
ensure that the year field displays neatly on the “paper.”

12

Figure 7: A partial dump of the IMDb crazy credits listing.

13

Figure 8: A partial dump of the IMDb director listing. The colored areas are tab characters.

14

0 10 20 30 40 50
Number of crazy credits (total 12,844)

0

1000

2000

3000

4000

5000

6000

7000

Fr
e
q
u
e
n
cy

Crazy Credits per Movie (total 675,271 movies)

Figure 9: Histogram of crazy credits per movies.

15

0 10 20 30 40 50 60 70
Number of directors (total 714,789)

0

100000

200000

300000

400000

500000

600000

700000

Fr
e
q
u
e
n
cy

Directors per Movie (total 675,271 movies)

Figure 10: Histogram of directors per movie.

16

4.2 NDBC explorations

We explored the NDBC (see Figure 11) buoy database looking to combine a collection of
technologies with interesting data. For this exploration, we are looking at real-time weather
data from the buoys that the NDBC monitors (see Figures 12 and 13). The technologies
that we combined were:

1. Web scraping - where we download a raw HTML page, extract parts of it that interest
us, and use those parts as input to the rest of the system.

2. HBase autoversioning - where we configure the HBase database to manage autover-
sioning data automatically for use. This will allow us to update the database with new
data without having to worry about managing the old data.

3. Python plotting capabilities - where we report the status of the latest data from the
buoys on a geographic plot, and look at the weather data reported by selected buoys
as a function of time.

Algorithmically, this is how we explored the NDBC database:

1. We decided if we were going to query the NDBC for live data, or to download all the
interesting data in mass to local storage. The difference between the two approaches
is the time to access new data files. There are numerous programs and applications
that are optimized for downloading lots of files in a fast and efficient manner. Python
is not one of these programs. Getting live data from the NDBC is fraught with all
the normal problems associated with accessing data from the Internet, and can be a
challenge.

2. Once the source of new data (local, or NDBC) has been identified, then meteorological
data for each of the stations is parsed from the station’s associated data file (see
Figure 14), and put into the database. Each data file can have up to 36 line entries (1
per hour), to that a short amount of historical data is available should the user desire
the data. The database is configured to handle 40 versions (also known as updates)
automatically. By default the user is always given the latest data. Previous versions
are available by requesting them.

3. All stations in the database have their position (latitude and longitude) updated from a
static file available from the NDBC (see Figure 15). There are stations in the database
that are not location database, and stations in the location database that are not
reporting.

4. The location of each station is color coded onto a geographic display, at three different
resolutions (see Figures 16 through 18). A station whose data is less than 1 hour old
(station data is reported hourly) is colored green. Data that is more than one hour old
is considered stale, and colored red.

17

Figure 11: National Data Buoy Center (NDBC) home page. From http://www.ndbc.noaa.

gov/

5. A selected station’s wind data is plotted on polar plot to show how the data changes
over time (see Figure 19).

Geographic plotting of the stations was not as straight forward as is should have been (see
Figure 20). Apparently you have to explicitly close each plot, even though you are creating
a new basemap each time.

18

http://www.ndbc.noaa.gov/
http://www.ndbc.noaa.gov/

Figure 12: NDBC real time data home page. From http://www.ndbc.noaa.gov/realtime.

shtml

19

http://www.ndbc.noaa.gov/realtime.shtml
http://www.ndbc.noaa.gov/realtime.shtml

Figure 13: NDBC real time data download page. From http://www.ndbc.noaa.gov/data/

realtime2/

20

http://www.ndbc.noaa.gov/data/realtime2/
http://www.ndbc.noaa.gov/data/realtime2/

Figure 14: Sample data from station 41013. All data columns are white-space delimited.
Missing data is indicated by the “MM”.

21

Figure 15: Sample station location data. Fields are delimited by the pipe symbol (—), and
may be empty. The station ID is the first field. Station location is reported in two different
formats in the same field. The first is degree decimal degree followed by the hemisphere
indicator. The second format is suitable for HTML presentation as degree (with the degree
symbol), minute, second, followed by the hemisphere indicator.

22

Figure 16: Buoy reporting status worldwide. A station whose data is less than 1 hour old
(station data is reported hourly) is colored green. Data that is more than one hour old is
considered stale, and colored red.

23

Figure 17: Buoy reporting status near continental USA. A station whose data is less than 1
hour old (station data is reported hourly) is colored green. Data that is more than one hour
old is considered stale, and colored red.

24

Figure 18: Buoy reporting status near Virginia. A station whose data is less than 1 hour
old (station data is reported hourly) is colored green. Data that is more than one hour old
is considered stale, and colored red.

25

Figure 19: Station 41013 wind file. The “S” marks the oldest data.

26

Figure 20: Buoy reporting status worldwide (bad data). The collection of stations in the
lower left is wrong. It appears that the the data was “left over” from previous plots. Ap-
parently you have to explicitly close each plot, even though you are creating a new basemap
each time.

27

5 Conclusion

“On the performance front, HBase is meant to scale out. If you have huge
amounts of data, measured in many gigabytes or terabytes, HBase may be for
you. HBase is rack-aware, replicating data within and between datacenter racks
so that node failures can be handled gracefully and quickly.”

Redmond and Wilson [4]

“Although HBase is designed to scale out, it doesnt scale down. . . . Additionally,
HBase is almost never deployed alone. Rather, its part of an ecosystem of scale-
ready pieces. These include Hadoop (an implementation of Googles MapReduce),
the Hadoop distributed file system (HDFS), and Zookeeper (a headless service that
aids internode coordination). This ecosystem is both a strength and a weakness; it
simultaneously affords a great deal of architectural sturdiness but also encumbers
the administrator with the burden of maintaining it.”

Redmond and Wilson [4]

“Any problem in computer science can be solved with one additional layer of indirection.
But that usually will create another problem.” - David Wheeler

“Any program in computer science can be sped up by removing one layer of indirection.”
- Anonymous

Parsing and summarizing information from the Internet Movie Database went smoothly.
The database key-value was the name of the movie, and the number of crazy credits and
directors per movie were updated easily and quickly. The histograms of crazy credits versus
movies, and directors verus movies, showed that of the 675,271 movies in the database ther
were 12,844 crazy credits. In about 50% of the time, a movie would have more than one
crazy credit, if it had any. The directors histogram showed that there were holes in the
database, because some of the movies did not credit a director.

Accessing, parsing, and inpretting the National Data Buoy Center (NDBC) data was
more challenging. The original design and implementation was to have the program access
live data on the Internet, process the data, and update the database. The data is updated
in “real-time” about once an hour on the hour. Down original implementation would take
almost and hour to complete its processing due to Internet connection speeds, and HBase
processing speed. The implementation was changed to scrape the NDBC site to identify
all available files, and then download those file in parrallel to local storage. Ten download
processes at a time were started, reducing the download time to approximately 6 minutes.
Ten processes were chosen arbitrarily, and not based on any sort of evaluation process. The
HBase database was configured to handle 40 updates per row-key, so the 36 updates in each
NDBC station report could be handled in their entirity and the database would ensure only
the last 40 updates were available. Parsing the machine generated data files was straight

28

forward. Displaying the data revealed that a Python plot must be closed before new data
can be displayed.

HBase is a columnar database. That is, it works well where the data has holes, where
the type of data to be grouped into a common “key-value” row is unknown, and where the
data and groupings may change over time. Because it is built on top of Hadoop, it should be
able to scale up and out easily. The test environment was a single node Hadoop installation,
so we weren’t able to test this capability.

29

A Selected stations

A collection of “interesting” station types gleaned from the NDBC station location file.

Table 3: A collection of interesting stations.

Name Image Explanation

10-meter discus
buoy

Weather buoys are instruments
which collect weather and ocean
data within the world’s oceans,
as well as aid during emergency
response to chemical spills, legal
proceedings, and engineering design.
Moored buoys have been in use
since 1951, while drifting buoys
have been used since 1979. Moored
buoys are connected with the ocean
bottom using either chains, nylon,
or buoyant polypropylene.

2.5-meter ODAS
buoy

Canadian Ocean Data Acquisition
System (ODAS)

Atlas Buoy Design of the relatively inexpensive
ATLAS (Autonomous Temperature
Line Acquisition System) mooring
was initiated by PMEL’s Engineer-
ing Development Division (EDD) in
1984. By the mid-1990’s, a reengi-
neering effort was underway to mod-
ernize the ATLAS.

(Continued on the next page.)

30

Table 3. (Continued from the previous page.)

Name Image Explanation

Bottom Mounted
ADCP

An Acoustic Doppler Current Pro-
filer, or Acoustic Doppler Profiler, is
often referred to with the acronym
ADCP. Scientists use the instrument
to measure how fast water is moving
across an entire water column. An
ADCP anchored to the seafloor can
measure current speed not just at the
bottom, but also at equal intervals all
the way up to the surface.

Canadian NO-
MAD buoy

The AXYS NOMAD is a unique
aluminum environmental monitoring
buoy designed for deployments in
extreme conditions. The NOMAD
(Navy Oceanographic Meteorologi-
cal Automatic Device) is a modi-
fied version of the 6m hull origi-
nally designed in the 1940s for the
U.S. Navys offshore data collection
program. It has been operating in
Canadas Weather Buoy network for
over 25 years and commonly experi-
ences winter storms and hurricanes
with wave heights approaching 20m.

(Continued on the next page.)

31

Table 3. (Continued from the previous page.)

Name Image Explanation

Seaglider Seaglider is an autonomous under-
water vehicle (AUV) or underwater
glider developed for continuous, long
term measurement of oceanographic
parameters. Rather than an elec-
trically driven propeller, the vehi-
cle uses small changes in buoyancy
and wings to achieve forward motion.
The system’s pitch and roll are con-
trolled using adjustable ballast (the
vehicle battery).

Slocum Glider The Slocum Glider is a uniquely
mobile network component capable
of moving to specific locations and
depths and occupying controlled spa-
tial and temporal grids. Driven in a
sawtooth vertical profile by variable
buoyancy, the glider moves both hor-
izontally and vertically. The long-
range and duration capabilities of
Slocum gliders make them ideally
suited for subsurface sampling at the
regional scale. Carrying a wide va-
riety of sensors, they can be pro-
grammed to patrol for weeks at a
time, surfacing to transmit their data
to shore while downloading new in-
structions at regular intervals, real-
izing a substantial cost savings com-
pared to traditional surface ships.

(Continued on the next page.)

32

Table 3. (Continued from the previous page.)

Name Image Explanation

Spray Glider Spray gliders are robotic submarines
that navigate underwater without a
human crew onboard and without ca-
bles connecting them to research ves-
sels at the sea surface. Spray glid-
ers are among a class of ocean in-
struments known as autonomous un-
derwater vehicles, or AUVs. These
gliders carry a variety of sensors, and
are programmed by researchers to
go where they are needed to do re-
search. They are used to take verti-
cal profiles of data, giving scientists
a clearer understanding of the tem-
perature, salinity, and turbidity of
specific areas of the oceans. These
measurements are then used to de-
termine and understand ocean circu-
lation and its role and influence on
the global climate

STB - SAIC
Tsunami Buoy

The Science Applications Interna-
tional Corporation (SAIC) Tsunami
Buoy (STB) is an enhanced ver-
sion of the NOAA Deep-ocean As-
sessment and Reporting of Tsunami
(DART) system.

(Continued on the next page.)

33

Table 3. (Continued from the previous page.)

Name Image Explanation

TABS II Texas Automated Buoy System
(TABS) In August, 1994, The State
of Texas General Land Office (GLO)
directed the Geochemical and Envi-
ronmental Research Group (GERG)
of Texas A&M University to imple-
ment a program that provides real-
time observations of surface currents
and water temperature at selected
locations along the Texas coast.
The Texas Automated Buoy System
(TABS) became operational in April
1995.

Waverider Buoy . . . in combination with designs for
very low power electronics, resulted
in the Waverider buoys.

(Last page.)

34

B Misc. files

The files used to create all these figures are attached to this report. They are:

1. startAll.sh - a bash shell script used to:

(a) Start the Hadoop DFS daemons, the namenode and datanodes via start-dfs.sh

(b) Start ResourceManager daemon and NodeManager daemon via start-yarn.sh

(c) Start the HBase server via start-hbase.sh

2. stopAll.sh - a bash shell script used to:

(a) Stop the HBase server via stop-hbase.sh

(b) Stop ResourceManager daemon and NodeManager daemon via stop-yarn.sh

(c) Stop the Hadoop DFS daemons, the namenode and datanodes via stop-dfs.sh

3. buoy.py - a Python script that accesses the National Data Buoy Center for “real-
time” data. The program:

(a) Downloads data reports from all buoys and sensors tracked by the data center.

(b) Parses the reports to get wind and temperature data.

(c) Plots the buoy position on various geographic displays.

(d) Data is persisted in an HBase database.

4. imdb.py - a Python script that accesses the data from the Internet Movie Database
(via downloaded zip files). The program:

(a) Parses selected files (list of videos, list of directors, list of crazy credits).

(b) Stores data in an HBase database.

(c) Extracts data from the database and creates histograms of interest.

Movie data comes from the Internet Movie Database (IMDb)4. Buoy data comes from the
National Data Buoy Center5.

4http://www.imdb.com/
5http://www.ndbc.noaa.gov/data/realtime2/

35

#!/bin/bash

start-dfs.sh
start-yarn.sh
start-hbase.sh
hbase thrift start &

"Chuck Cartledge"

#!/bin/bash

hbase thrift stop
stop-hbase.sh
stop-yarn.sh
stop-dfs.sh

"Chuck Cartledge"

import happybase
from lxml import html
import requests
import lxml.html

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

from datetime import datetime
import locale
import time
import calendar
import glob
import numpy as np
import tempfile
import commands
import os

def connect():
 connection = happybase.Connection()
 return(connection)

def deleteTable(con, table):
 con.disable_table(table)
 con.delete_table(table)

def createTable(con, table):
 # con.create_table(table,{'posit':{}, 'wind':{}, 'air':{}, 'report':{}})
 con.create_table(table,{'posit':dict(max_versions=40), 'wind':dict(max_versions=40), 'air':dict(max_versions=40), 'report':{}})

def dummyData(tableConnection, rowID):
 tableConnection.put(rowID, {"col1:field":"kaushik"})
 tableConnection.put(rowID, {"col1:field":"kaushik_again"})

def dummyStuff():
 dummyData(tableConnection, "first")

 for key, data in tableConnection.scan(include_timestamp=True):
 print ">"+key+"<", data

 values = tableConnection.cells("first", 'col1:field', versions=37)
 for value in values:
 print "Cell data: %s" % value

def getDataLinks(sourcePage):
 links = []
 try:
 page = requests.get(sourcePage)
 dom = lxml.html.fromstring(page.content)
 for link in dom.xpath('//a/@href'):
 links.append(link)
 except Exception as ex:
 template = "getDataLinks(): An exception of type {0} occured. Arguments:\n{1!r}"
 message = template.format(type(ex).__name__, ex.args)
 print message

 return(links)

def populateWithMiscData(sourcePage, links, tableConnection, localData):
 stations = []
 sleepyTime = -1
 for link in links:
 length = len(link)
 extension = link[(length - 4): length]
 if extension == ".txt":
 station = link[0:(length - 4)]
 if station == "ship_obs":
 continue
 try:
 if localData == True:
 url = sourcePage + "/" + link
 f = open(url)
 temp = f.read()
 f.close()
 lines = temp.split("\n")
 else:
 url = sourcePage + link
 temp = requests.get(url)
 lines = temp.content.split("\n")

 print "Processing station: " + station
 # https://github.com/wbolster/happybase/issues/44
 row = tableConnection.scan(
 row_start=station,
 filter='KeyOnlyFilter() AND FirstKeyOnlyFilter()',
 limit=1)
 if next(row, None) is not None:
 temp = tableConnection.row(station, columns=["report"])
 try:
 lastReport = float(temp['report:lastReport'])
 except:
 lastReport = 0
 else:
 lastReport = 0

 updateMessage = False
 stations.append(station)
 lines.reverse()
 for line in lines:
 # print line
 if line[0:1] == "2":
 fields = filter (None, line.split(" "))
 # print fields
 temp = line[0:16]
 # print temp
 date_object = datetime.strptime(temp, "%Y %m %d %H %M")
 timeOfReport = time.mktime(date_object.timetuple())
 if timeOfReport > lastReport:
 temp = str(timeOfReport)
 hbaseTimestamp = int(timeOfReport)
 tableConnection.put(station.upper(), {"wind:WDIR":fields[5], \
 "wind:WSPD":fields[6], \
 "wind:GST":fields[7], \
 "air:APRES":fields[12], \
 "air:ATMP":fields[13], \
 "report:lastReport":temp}, \
 timestamp = hbaseTimestamp)
 updateMessage = True
 if sleepyTime > 0:
 time.sleep(sleepyTime)
 else:
 # print "Skipping record for: " + station + " data is " + str(lastReport - timeOfReport) + " seconds old."
 dummy = None

 leadIn = None
 if updateMessage == True:
 leadIn = "Updated data for: "
 else:
 leadIn = "No new data for: "

 print leadIn + station

 except Exception as ex:
 template = "populateWithMiscData(): An exception of type {0} occured. Arguments:\n{1!r}"
 message = template.format(type(ex).__name__, ex.args)
 print message

 return(stations)

def populateWithPositData(sourcePage, stations, tableConnection):
 file = "station_table.txt"
 d = {}
 url = sourcePage + file
 temp = requests.get(url)
 lines = temp.content.split("\n")
 for line in lines:
 fields = line.split("|")
 # print fields
 if len(fields) > 0:
 d[fields[0].upper()] = fields

 if stations is None:
 stations = []
 for station, dummy in tableConnection.scan():
 stations.append(station)

 for station in stations:
 sta = station.upper()
 if sta in d:
 fields = d[sta]
 # print fields
 temp = fields[6]
 fields = filter(None, temp.split(" "))
 # print fields

 lat = float(fields[0])
 if fields[1] == "S":
 lat = -lat
 lon = float(fields[2])
 if fields[3] == "W":
 lon = -lon

 print "Processing station " + sta + " at ",lat, ",", lon
 tableConnection.put(sta, {"posit:lat": str(lat), "posit:lon":str(lon)})
 else:
 print "No positional data for " + sta

def plotBuoyLocations(tableConnection, \
 llcrnrlatIn=20, urcrnrlatIn=50, \
 llcrnrlonIn=-130, urcrnrlonIn=-60, \
 title="Continental USA", \
 plotFile = "/tmp/plotFile.png"):

 hours = 1
 staleThreshold = hours * 3600 # hours in seconds

 now = calendar.timegm(time.gmtime())
 # print "now ="+str(now)

 m = Basemap(projection='mill', \
 llcrnrlat=llcrnrlatIn, urcrnrlat=urcrnrlatIn, \
 llcrnrlon=llcrnrlonIn, urcrnrlon=urcrnrlonIn, \
 resolution="c")

 m.drawcoastlines()
 m.drawcountries()
 # m.drawstates()
 m.fillcontinents(color='#04bae3', lake_color="white")
 m.drawmapboundary(fill_color="#ffffff")

 for key, data in tableConnection.scan():
 # print ">"+key+"<", data
 try:
 lat = float(data["posit:lat"])
 lon = float(data["posit:lon"])
 # print lat, lon
 x,y=m(lon, lat)
 diff = now - float(data["report:lastReport"])
 # print key + " at (" + data["posit:lat"] + ", " + data["posit:lon"] + ")"
 # print diff, staleThreshold, data["report:lastReport"]
 if diff > staleThreshold:
 col = 'r'
 else:
 col = 'g'

 m.plot(x, y, col+'o', markersize=20, alpha=.5)
 except:
 print "No positional information for " + key

 plt.title(title)
 # plt.show()
 plt.savefig(plotFile)
 plt.close()

def testing():
 a="2016 07 19 01 00"
 date_object = datetime.strptime(a, "%Y %m %d %H %M")
 print date_object
 print time.mktime(date_object.timetuple())

def getLocalLinks(localDirectory):
 links=[]
 for file in glob.glob(localDirectory + "/*.txt"):
 fields = file.split("/")
 links.append(fields[len(fields) - 1])
 return (links)

def plotBuoyWindData(tableConnection, buoy, plotFile, maxVersions=100):
 # http://matplotlib.org/examples/pylab_examples/polar_demo.html

 speed = tableConnection.cells(buoy, 'wind:WSPD', versions = maxVersions)
 for index, item in enumerate(speed):
 speed[index] = float(item)

 direction = tableConnection.cells(buoy, 'wind:WDIR', versions = maxVersions)
 # print direction
 for index, item in enumerate(direction):
 direction[index] = 450 - float(item)
 direction[index] = 2 * np.pi /360 * direction[index]

 # print direction

 ax = plt.subplot(111, projection='polar')
 ax.plot(direction, speed, color='r', linewidth=3)
 ax.set_rmax(max(speed))
 ax.grid(True)
 ax.set_xticklabels([90,45,00,315, 270, 225, 180, 135])
 # ax.set_yticklabels([0,90,180,270])
 ax.text (direction[0], speed[0], 'S')

 ax.set_title("Station " + buoy + " wind and speed direction", va='bottom')
 # plt.show()
 plt.savefig(plotFile)

def refreshLocalData(metroSourcePage, rawMetroSourcePage):
 links = getDataLinks(rawMetroSourcePage)

 # print links
 f = tempfile.NamedTemporaryFile(delete=False)
 print "Temporary file is:" + f.name
 for l in links:
 length = len(l)
 extension = l[(length - 4): length]
 if extension == ".txt":
 temp = rawMetroSourcePage + l
 f.write(temp + "\n")

 f.close()
 res = commands.getoutput("aria2c -j 10 -i %s -d %s" % (f.name, metroSourcePage))
 print res
 os.unlink(f.name)

def main():
 table = 'buoy'
 positSourcePage = "http://www.ndbc.noaa.gov/data/stations/"
 rawMetroSourcePage = "http://www.ndbc.noaa.gov/data/realtime2/"
 virginiaFile = "../../Images/virginia.png"
 usaFile = "../../Images/usa.png"
 worldFile = "../../Images/world.png"
 buoyPlotFile = "../../Images/buoyWindFile.png"

 buoyOfInterest = "41013"

 localData = True
 refreshData = False

 refreshDatabase = False

 if localData == True:
 metroSourcePage = "/tmp/Also"
 if refreshData == True:
 refreshLocalData(metroSourcePage, rawMetroSourcePage)
 links = getLocalLinks(metroSourcePage)
 else:
 metroSourcePage = "http://www.ndbc.noaa.gov/data/realtime2/"
 links = getDataLinks(metroSourcePage)

 # metroSourcePage base of where to get data
 # links where to look for data when appended to metroSourcePage

 locale.setlocale(locale.LC_ALL, '')
 con = connect()

 if refreshDatabase == True:
 deleteTable(con, table)
 createTable(con, table)
 else:
 con.close()

 con = connect()
 tableConnection = con.table(table)

 # print links
 stations = populateWithMiscData(metroSourcePage, links, tableConnection, localData)

 stations = None
 populateWithPositData(positSourcePage, stations, tableConnection)
 plotBuoyLocations(tableConnection, 36, 41, -85, -70, "Virginia", plotFile=virginiaFile)
 plotBuoyLocations(tableConnection, plotFile=usaFile)
 plotBuoyLocations(tableConnection,-90, 90, -180, 180, "The World", worldFile)
 plotBuoyWindData(tableConnection, buoyOfInterest, buoyPlotFile)
 con.close()

main()

"Chuck Cartledge"

import happybase
import gzip
import matplotlib.pyplot as plt
import locale

def extractYear(line):
 length = len(line)
 yearStarts = length - 6
 year = line[yearStarts:(yearStarts + 4)]
 # print year
 returnValue = year.isdigit()
 return(returnValue)

def connect():
 connection = happybase.Connection()
 return(connection)

def deleteTable(con, table):
 con.disable_table(table)
 con.delete_table(table)

def createTable(con, table):
 con.create_table(table,{'credit':{}, 'director':{}})

def splitter(line):
 fields=filter(None, line.split("\t"))
 return(fields)

def validMovie(line):
 returnValue = None
 numFields=len(line)
 if numFields < 2:
 returnValue = False
 else:
 if line[0][0] == '"':
 returnValue = False
 else:
 ending=len(line[0])
 length=4
 if (line[0][(ending - length -1):(ending - 2)] == line[numFields - 1][0:3]):
 returnValue = True
 return(returnValue)

def insertMovies(file, tableConnection):
 counter = 0
 reportCounter = 0
 reportLimit = 10000
 inserted = 0
 # f = open ("/tmp/Temp/part.txt", 'rb')
 with gzip.open(file, 'rb') as f:
 for line in f:
 counter += 1
 reportCounter += 1
 if line == "===========\n":
 break
 print "Past header at line: ", counter
 for line in f:
 counter += 1
 reportCounter += 1
 # print ('got line', line)
 # print [field.strip() for field in line.strip("\t")]
 temp=splitter(line)
 # print temp
 if validMovie(temp) == True:
 # print("insert ", temp[0])
 # tableConnection.put(temp[0],{'credit:':'0', 'director:':'0'})
 tableConnection.put(temp[0],{})
 inserted += 1
 if reportCounter >= reportLimit:
 print str(locale.format("%d", counter, grouping=True)) + " movie records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"
 reportCounter = 0
 print str(locale.format("%d", counter, grouping=True)) + " total movie records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"

def insertDirectors(file, tableConnection):
 counter = 0
 reportCounter = 0
 reportLimit = 10000
 inserted = 0
 with gzip.open(file, 'rb') as f:
 for line in f:
 counter += 1
 # print (line)
 if line == "----			------\n":
 break
 # if counter > 300:
 # break
 print "Past header at line: ",counter
 director = ""
 for line in f:
 counter += 1
 reportCounter += 1
 if line == "---\n":
 break
 if line == "\n":
 director = ""
 else:
 fields = line.split("\t")
 if director == "":
 director = fields[0]
 title = fields[len(fields) - 1]
 # title="'Twas Ever Thus (1911)\n"
 if title[0:1] == '"': # Do nothing
 dummy = 1
 elif extractYear(title) == True:
 data = tableConnection.row(title, columns=['director'])
 temp = None
 try:
 temp = int(data['director:']) + 1
 except:
 temp = 1
 try:
 tableConnection.put(title,{'director:':str(temp)})
 except:
 print "Error attempting to update director count using: " + title + " temp=:", temp
 inserted += 1
 # print "Updating director for:"+title
 if reportCounter >= reportLimit:
 print str(locale.format("%d", counter, grouping=True)) + " director records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"
 reportCounter = 0
 print str(locale.format("%d", counter, grouping=True)) + " total director records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"

def insertCredits(file, tableConnection):
 counter = 0
 reportCounter = 0
 reportLimit = 10000
 inserted = 0
 with gzip.open(file, 'rb') as f:
 for line in f:
 counter += 1
 # print (line)
 if line == "=============\n":
 break
 # if counter > 300:
 # break
 print "Past header at line: ",counter
 title = ""
 movie = False
 for line in f:
 counter += 1
 reportCounter += 1
 type = line[0:1]
 # print line
 # print ">"+type+"<"
 # if counter > 21000:
 # print counter
 # chuck
 if line == "---\n":
 break
 elif type == "\n":
 title = ""
 movie = False
 elif type == "#":
 # print line
 if line[2:3] == '"' : # Do nothing
 dummy = 1
 else:
 title = line[2:(len(line)-1)]
 movie = extractYear(line)
 # print title, movie
 elif type == "-" and movie == True:
 # print title
 value = tableConnection.row(title, columns=['credit'])
 # print value
 temp = 0
 if len(value) == 0:
 temp = 1
 else:
 temp = int(value['credit:']) + 1
 tableConnection.put(title,{'credit:':str(temp)})
 inserted += 1
 # print "Updating credits: ", title
 if reportCounter >= reportLimit:
 print str(locale.format("%d", counter, grouping=True)) + " credit records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"
 reportCounter = 0
 print str(locale.format("%d", counter, grouping=True)) + " total credit records processed (" + str(locale.format("%d", inserted, grouping=True)) + " inserted)"

def peeker(tableConnection):
 prefix="'O"
 for key, data in tableConnection.scan(row_prefix=prefix):
 print ">"+key+"<", data

def getNumberOfEntries(tableConnection):
 counter = 0
 for key, data in tableConnection.scan():
 counter += 1
 return(counter)

def plotCreditsPerMovie(totalRows, tableConnection, saveFile):
 credits = []
 for key, data in tableConnection.scan():
 temp = None
 try:
 temp = data['credit:']
 except:
 temp = None
 if temp is not None:
 value = int(temp)
 credits.append(value)
 # print "Appended data from: ", key, value
 plt.hist(credits,bins=max(credits))
 plt.title("Crazy Credits per Movie (total "+ str(locale.format("%d", totalRows, grouping=True)) + " movies)")
 plt.xlabel("Number of crazy credits (total "+ str(locale.format("%d", sum(credits), grouping=True)) + ")")
 plt.ylabel("Frequency")
 # plt.show()
 plt.savefig(saveFile)

def plotDirectorsPerMovie(totalRows, tableConnection, saveFile):
 credits = []
 for key, data in tableConnection.scan():
 temp = None
 try:
 temp = data['director:']
 except:
 temp = 0
 if temp is not None:
 value = int(temp)
 credits.append(value)
 # print "Appended data from: ", key, value
 plt.hist(credits,bins=max(credits))
 plt.title("Directors per Movie (total "+ str(locale.format("%d", totalRows, grouping=True)) + " movies)")
 plt.xlabel("Number of directors (total " + str(locale.format("%d", sum(credits), grouping=True)) + ")")
 plt.ylabel("Frequency")
 # plt.show()
 plt.savefig(saveFile)

def main():
 table = 'imdb'
 movieFile = "/home/chuck/Downloads/movies.list.gz"
 directorFile = "/home/chuck/Downloads/directors.list.gz"
 crazyCreditsFile = "/home/chuck/Downloads/crazy-credits.list.gz"

 creditsFileImage = "../../Images/creditsHisto.pdf"
 directorFileImage = "../../Images/directorsHisto.pdf"

 locale.setlocale(locale.LC_ALL, '')

 con = connect()
 # deleteTable(con, table)
 # createTable(con, table)
 tableConnection = con.table(table)
 # insertMovies(movieFile, tableConnection)
 # insertDirectors(directorFile, tableConnection)
 # insertCredits(crazyCreditsFile, tableConnection)
 # peeker(tableConnection)
 numberOfRows = getNumberOfEntries(tableConnection)
 # numberOfRows = -1;
 print "There are " + str(locale.format("%d", numberOfRows, grouping=True)) + " rows in the table."
 plotCreditsPerMovie(numberOfRows, tableConnection, creditsFileImage)
 plotDirectorsPerMovie(numberOfRows, tableConnection, directorFileImage)
 # deleteTable(con, table)

main()

"Chuck Cartledge"

http://www.imdb.com/
http://www.ndbc.noaa.gov/data/realtime2/

The start and stop bash shell scripts ensure
that all daemons (servers and services are
started and stopped in the correct order.

36

C References

[1] Jesse Anderson, How-to: Use the hbase thrift interface, part 1, http://blog.cloudera.
com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/, 2013.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber, Bigtable: A distributed
storage system for structured data, ACM Transactions on Computer Systems (TOCS) 26
(2008), no. 2, 4.

[3] Nishant Garg, Hbase essentials, Packt Publishing Ltd, 2014.

[4] Eric Redmond and Jim R Wilson, Seven databases in seven weeks, Pragmatic Bookshelf,
2012.

[5] Apache Staff, Hdfs architecture guide, https://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html, 2016.

[6] Career Staff, Introduction to rdbms, http://www.careerbless.com/db/rdbms/c1/

rdbms.php, 2016.

[7] Wikipedia Staff, Apache hadoop, https://en.wikipedia.org/wiki/Apache_Hadoop,
2016.

37

http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://www.careerbless.com/db/rdbms/c1/rdbms.php
http://www.careerbless.com/db/rdbms/c1/rdbms.php
https://en.wikipedia.org/wiki/Apache_Hadoop

